GIDEON blog

Try it Free Latest Updates Video Tutorials
Subscribe , j

Archive for the ‘Diagnosis’ Category

Chagas Disease

by Dr. Jaclynn Moskow

Trypanosoma cruzi parasite, 3D illustration. A protozoan that causes Chagas' disease transmitted to humans by the bite of triatomine bug
Trypanosoma cruzi parasite, the etiologic agent of Chagas disease

 

In 1909, Brazilian physician Carlos Chagas learned of a local phenomenon in which blood-sucking insects were biting people on the face during sleep. On April 14, he dissected one such insect and found parasitic euglenoids living inside of it (1). Dr. Chagas named the parasite Trypanosoma cruzi (T. cruzi) and, in this moment, discovered both the causative agent and vector of “Chagas Disease.”

On April 14, 2021, we recognize the second annual World Chagas Disease Day (2). Chagas disease, also known as American Trypanosomiasis, is endemic to Latin America. It can lead to severe cardiac, neurologic, and gastrointestinal disease  – and in some cases is fatal, causing about 12,000 deaths each year (3).

The Chagas disease represents the third-largest tropical disease burden worldwide, after malaria and schistosomiasis (4). It has likely been with us for thousands of years, as T. cruzi DNA has been recovered from ancient mummies and bone fragments (1).

Transmission

Triatomine bugs, also known as “kissing bugs”, “cone-nosed bugs”, or “bloodsuckers”, are the vectors for Chagas disease. They acquire T. cruzi after biting infected animals or humans and transmit the parasite to others through their feces. There are over 150 species of domestic and wild animals that serve as reservoirs for Chagas disease (5), including dogs, cats, pigs, rabbits, raccoons, rats, bats, armadillos, and monkeys.

 

The kissing bug. Blood sucker, infection is known as Chagas disease.
‘Kissing bug’,  vector of Chagas disease

 

Triatomine bugs are commonly found in rural areas, in houses made from materials such as mud, adobe, straw, and palm thatch (6). They feed at night. If they defecate on an individual and T. cruzi gains access to the body via a mucus membrane or break in the skin, the transmission of Chagas disease may occur.

Vertical transmission of Chagas disease is possible during pregnancy. Chagas disease can also be transmitted via blood transfusion and organ transplantation, and there is some evidence that it may be transmitted through sex and in rare instances through consumption of game meat. It can also be acquired by consuming food or water contaminated with insect remains (4).

 

Clinical Presentation

The incubation period for Chagas disease depends upon the mode of transmission. Vectorially transmitted cases usually manifest in one-to-two weeks, while orally transmitted cases may take up to 3 weeks – and transfusion-based cases up to 120 days (5).

Chagas disease has an acute and chronic phase. The acute phase is often asymptomatic or mild in nature and usually resolves spontaneously (5). The acute phase may begin with the development of a “chagoma” – an indurated area of erythema and swelling with local lymph node involvement (7). “Romana’s sign” consists of painless edema of the eyelids and periocular tissues (resulting from conjunctival inoculation) and is usually unilateral. Patients in the acute phase may develop fever, malaise, and anorexia. Generalized lymphadenopathy and mild hepatosplenomegaly may be present. Rarely, meningoencephalitis or severe myocarditis with arrhythmias and heart failure may occur.

10% to 30% of acute infections will progress to chronic disease. Chronic disease may present years or decades after the initial infection. Cardiac manifestations include arrhythmias, thromboembolism, and cardiomyopathy. Arrhythmias may present as episodes of vertigo, syncope, or seizures. Congestive heart failure may develop, leading to death. Cerebral disease can also occur and is characterized by headache, seizures, focal neurological deficits, and evidence of ischemia and infarct. Gastrointestinal manifestations include megaesophagus and megacolon. Dysfunction of the urinary bladder is also reported. Chagas disease has an overall case-fatality rate of 10% (7).

Patients with chronic Chagas disease who become immunosuppressed may experience a reactivation of the infection. In individuals with concurrent HIV/AIDS and Chagas disease, the central nervous system is the most commonly affected site, and space-occupying lesions often occur. (8).

 

Diagnosis and Treatment

Chagas disease may be diagnosed through visualization of protozoa in blood or tissue, serology, xenodiagnosis, or PCR. The anti-parasitic medications Nifurtimox or Benznidazole can be used for treatment. Treatment is curative in approximately 50-80% of acute-phase cases, and 20-60% of chronic phase cases (9). Treatment is curative in greater than 90% of congenital cases when given within the first year of life (10). Treatment of pregnant women is not recommended (11).

Prevalence 

Vector-borne transmission of Chagas disease only occurs in the Americas. Approximately 121 million individuals are at risk in Central and South America and Mexico. If you have a GIDEON account, click here to explore our Chagas disease outbreak map. An estimated 8 million people are currently infected (12).  

Vector-borne transmission of Chagas disease is exceedingly rare in the United States, with 28 cases documented between 1955 and 2015 (13). About 300,000 people are currently living in the United States with Chagas disease that was acquired in Latin America (14). In Europe, the prevalence of T. cruzi infection among Latin American migrants is approximately 6% (4).

In 2007, two notable outbreaks occurred as the result of ingestion of sources contaminated with T. cruzi. 166 cases occurred in Brazil from contaminated food and 128 cases in Venezuela from contaminated juice (4). 

 

Prevention

Vector-control programs centered around the widespread use of insecticides have led to some success in decreasing the prevalence of Chagas disease. This progress, however, has been recently complicated by the emergence of insecticide-resistant vectors.

 

Falling death rates of Chagas disease (Trypanosomiasis – American), 1990 – 2016

 

Trypanosomiasis – American is otherwise known as Chagas disease

 

Individuals living in endemic areas can decrease their risk of contracting the disease by completing home improvement projects aimed at disrupting triatomine bug nests. These nests are commonly found beneath porches, between rocky surfaces, in wood/brush piles, rodent burrows, and chicken coops (15). Individuals traveling to endemic areas can decrease their risk of contracting the disease by applying insect repellent, wearing protective clothing, and using bed nets.

The screening of blood products for Chagas disease is another important prevention strategy. In most endemic countries, all blood donations are tested for T. cruzi antibodies. In countries in which cases are imported, screening strategies vary (16, 17). In the United States, all first-time blood donors are tested. In Canada, the UK, and Spain, only donors considered “at-risk” are tested (such as those who previously lived in, or recently traveled to, Latin America). In Sweden, individuals who lived in endemic countries for more than five years are precluded from donating blood, while in Japan, only individuals with a known history of Chagas disease are excluded. In China, blood donors are not currently screened for Chagas disease.

Recently, a new surveillance system for Chagas disease has been implemented in some countries where malaria is also endemic; microscopy technicians have been trained to identify T. cruzi in malaria films (18).

 

Did you like this article? Share it on social media!

Check out more of our latest content here

 

References 

(1) D. Steverding, “The history of Chagas disease”, Parasites & Vectors, vol. 7, no. 1, p. 317, 2014. Available: 10.1186/1756-3305-7-317

(2) “World Chagas Disease Day: raising awareness of neglected tropical diseases”, World Health Organization, 2019. [Online]. Available: https://www.who.int/neglected_diseases/news/world-Chagas-day-approved/en/

(3) B. Lee, K. Bacon, M. Bottazzi and P. Hotez, “Global economic burden of Chagas disease: a computational simulation model”, The Lancet Infectious Diseases, vol. 13, no. 4, pp. 342-348, 2013. Available: 10.1016/s1473-3099(13)70002-1 

(4) “Trypanosomiasis – American Worldwide Distribution”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/trypanosomiasis-american-12460/worldwide

(5) A. Rassi, A. Rassi and J. Marin-Neto, “Chagas disease”, The Lancet, vol. 375, no. 9723, pp. 1388-1402, 2010. Available: 10.1016/s0140-6736(10)60061-x

(6) “Parasites – American Trypanosomiasis (also known as Chagas Disease): Detailed FAQs”, Centers for Disease Control and Prevention, Global Health, Division of Parasitic Diseases and Malaria, 2021. [Online]. Available: https://www.cdc.gov/parasites/chagas/gen_info/detailed.html#intro

(7) “Trypanosomiasis – American”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/trypanosomiasis-american-12460

(8) A. Vaidian, L. Weiss, and H. Tanowitz, “Chagas’ disease and AIDS”, Kinetoplastid Biol Dis, vol. 3, no. 1, p.2, 2004. Available: 10.1186/1475-9292-3-2

(9) J. Guarner, “Chagas disease as example of a reemerging parasite”, Seminars in Diagnostic Pathology, vol. 36, no. 3, pp. 164-169, 2019. Available: 10.1053/j.semdp.2019.04.008

(10) F. Machado et al., “Chagas Heart Disease”, Cardiology in Review, vol. 20, no. 2, pp. 53-65, 2012. Available: 10.1097/crd.0b013e31823efde2

(11) E. Howard, P. Buekens and Y. Carlier, “Current treatment guidelines for Trypanosoma cruzi infection in pregnant women and infants”, International Journal of Antimicrobial Agents, vol. 39, no. 5, pp. 451-452, 2012. Available: 10.1016/j.ijantimicag.2012.01.014

(12) “Chagas disease (American trypanosomiasis): Epidemiology”, World Health Organization, 2021. [Online]. Available: https://www.who.int/chagas/epidemiology/en/

(13) S. Montgomery, M. Parise, E. Dotson and S. Bialek, “What Do We Know About Chagas Disease in the United States?”, The American Journal of Tropical Medicine and Hygiene, vol. 95, no. 6, pp. 1225-1227, 2016. Available: 10.4269/ajtmh.16-0213

(14) “Parasites – American Trypanosomiasis (also known as Chagas Disease): Epidemiology & Risk Factors”, Centers for Disease Control and Prevention, Global Health, Division of Parasitic Diseases and Malaria, 2019. [Online]. Available: https://www.cdc.gov/parasites/chagas/epi.html

(15) “Parasites – American Trypanosomiasis (also known as Chagas Disease): Triatomine Bug FAQs”, Centers for Disease Control and Prevention, Global Health, Division of Parasitic Diseases and Malaria, 2020. [Online]. Available: https://www.cdc.gov/parasites/chagas/gen_info/vectors/index.html

(16) A. Angheben et al.,”Chagas disease and transfusion medicine: a perspective from non-endemic countries”, Blood Transfus, vol. 13, no. 4, pp. 40-50, 2015. Available: 10.2450/2015.0040-15

(17) V. Mangano, M. Prato, A. Marvelli, G. Moscato and F. Bruschi, “Screening of at‐risk blood donors for Chagas disease in non‐endemic countries: Lessons from a 2‐year experience in Tuscany, Italy”, Transfusion Medicine, vol. 31, no. 1, pp. 63-68, 2020. Available: 10.1111/tme.12741 

(18) “Chagas disease (American trypanosomiasis): Prevention of Chagas Disease”, World Health Organization, 2021. [Online]. Available: https://www.who.int/chagas/disease/prevention/en/

World Tuberculosis Day 2021

by Dr. Jaclynn Moskow

Doctor with magnifier looking at bacteria in lungs. Tuberculosis, mycobacterium tuberculosis and world tuberculosis day concept on white background. Bright vibrant violet vector isolated illustration

Each year on March 24th, we recognize “World Tuberculosis Day” in an effort to build global awareness about the ongoing tuberculosis epidemic. Tuberculosis is an infectious disease caused by bacteria of the Mycobacterium tuberculosis complex, including Mycobacterium tuberculosis, Mycobacterium africanum, and Mycobacterium bovis (1). Worldwide, tuberculosis is the leading cause of death from an infectious agent (2).

“World Tuberculosis Day” occurs on March 24th as it was on this date, in 1884, that Dr. Robert Koch announced that he had discovered the causative agent of this disease (3).

 

Transmission

Tuberculosis is generally spread via the inhalation of droplet nuclei expelled by individuals with the active pulmonary or laryngeal disease. Less commonly, humans may also acquire tuberculosis from consuming unpasteurized dairy products. The incubation period of tuberculosis ranges from 4w-12w.

 

Clinical Manifestations

Clinical manifestations of tuberculosis vary depending on the site of mycobacterial proliferation (4). Most infections represent reactivation of a dormant focus in a lung and present with chronic fever, weight loss, nocturnal diaphoresis, and productive cough (5). Approximately 8% of patients with pulmonary tuberculosis will experience hemoptysis (6). Tuberculosis can also cause extrapulmonary disease in sites including the bone, joints, muscles, central nervous system, gastrointestinal system, hepatobiliary system, genitourinary system, eyes, breasts, and skin.

Individuals with latent tuberculosis infection (LTBI) do not experience symptoms but are carriers of the disease. They cannot spread the disease to others unless it becomes reactivated. The lifetime risk of reactivation for a person with documented LTBI is estimated to be 5–10% (7). Immunocompromised individuals are much more likely to experience tuberculosis reactivation.  

 

Diagnosis and Treatment

A definitive diagnosis of tuberculosis is made by the identification of the Mycobacterium tuberculosis complex in a clinical sample. Since the culture of these bacteria can be time-consuming, treatment may be initiated based on clinical suspicion alone. Tuberculosis skin tests and blood tests can be used to identify whether an individual has been infected, but cannot be used to distinguish between active and latent infections. Radiographic and other imaging techniques may also be useful in identifying patients, including those with asymptomatic active disease.

 

Mantoux test, positive result. Author: Grook da Oger.
Mantoux test, positive result. Author: Grook da Oger.

 

Typical pulmonary infection is treated with two months of Isoniazid, Rifampin, and Pyrazinamide (with Ethambutol pending results of susceptibility testing), followed by four months of Isoniazid and Rifampin alone. Treatment of multidrug-resistant tuberculosis generally includes the use of five drugs (including Pyrazinamide and/or Rifampin) for at least 6 months, followed by four drugs for 18-24 months (5).

Patients suspected of having active tuberculosis should be isolated, and healthcare personnel should observe relevant precautions.

The Centers for Disease Control and Prevention recommends treating individuals with latent tuberculosis that are at a high risk of progressing to an active infection. Included in the “high risk” designation are individuals with HIV/AIDS and other diseases that weaken the immune system, individuals who became infected with tuberculosis in the last two years, infants and young children, the elderly, and injecting drug users (8).

 

Prevalence 

In 2018, approximately 1.7 billion individuals were infected with Mycobacterium tuberculosis – roughly 23% of the world’s population (9). In 2019, approximately 10 million individuals experienced symptomatic tuberculosis, and approximately 1.4 million died as a result of the disease (10). Tuberculosis is found worldwide, but over 95% of cases and deaths occur in developing countries (10). Eight countries currently account for two-thirds of new tuberculosis cases: India, Indonesia, China, Philippines, Pakistan, Nigeria, Bangladesh, and South Africa (10). If you have a GIDEON account, click here to explore our tuberculosis outbreak map.

 

Tuberculosis cases and rates Worldwide, 1965 – today

Worldwide Tuberculosis cases and rates, 1965 - today

Vaccination 

Currently, Bacille Calmette-Guerin (BCG) vaccine remains the only licensed vaccine for the prevention of tuberculosis. It provides some protection against childhood tuberculosis but is less effective in preventing adult disease (11). BCG is commonly given to children in countries in which tuberculosis is prevalent, and is estimated to decrease the risk of contracting the disease by 50% (12).

 

Prevention for High-Risk Travelers

The Centers for Disease Control and Prevention recommend that “travelers who anticipate possible prolonged exposure to people with tuberculosis (for example, those who expect to come in contact routinely with clinic, hospital, prison, or homeless shelter populations) should have a skin or blood test before leaving the United States. If the test reaction is negative, they should have a repeat test 8 to 10 weeks after returning to the United States. Additionally, annual testing may be recommended for those who anticipate repeated or prolonged exposure or an extended stay over a period of years.” (8)

 

The Future

In 2014, the World Health Organization announced that they seek to end the global tuberculosis epidemic by 2035. They defined this goal “with targets to reduce tuberculosis deaths by 95% and to cut new cases by 90%, and to ensure that no family is burdened with catastrophic expenses due to tuberculosis.”  WHO called on the cooperation and collaboration of governments, and suggested a strategy that focuses on highly vulnerable populations (such as migrants) (13). 

In 2020, they announced that the COVID-19 pandemic has stalled progress, as a result of resources being reallocated (2). They noted, for example, that many diagnostic testing machines have been used to test for COVID-19 instead of for tuberculosis. Hopefully, robust testing efforts for the disease will resume soon, as the identification of cases is critical to ending the epidemic.

 

Did you like this article? Share it on social media!

Check out more of our latest content here

 

References

(1) M. Rowe and J. Donaghy, “Mycobacterium bovis: the importance of milk and dairy products as a cause of human tuberculosis in the UK. A review of taxonomy and culture methods, with particular reference to artisanal cheeses”, International Journal of Dairy Technology, vol. 61, no. 4, pp. 317-326, 2008. Available: 10.1111/j.1471-0307.2008.00433.x

(2) “Global Tuberculosis Report”, World Health Organization, 2020. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf

(3) “The Clock Is Ticking: World TB Day 2021”, World Health Organization, 2021. [Online]. Available: https://www.who.int/campaigns/world-tb-day/world-tb-day-2021

(4) W. Cruz-Knight and L. Blake-Gumbs, “Tuberculosis”, Primary Care: Clinics in Office Practice, vol. 40, no. 3, pp. 743-756, 2013. Available: 10.1016/j.pop.2013.06.003

(5) “Tuberculosis”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/tuberculosis-12470

(6) U. Seedat and F. Seedat, “Post-primary pulmonary TB haemoptysis – When there is more than meets the eye”, Respiratory Medicine Case Reports, vol. 25, pp. 96-99, 2018. Available: 10.1016/j.rmcr.2018.07.006

(7) “Latent tuberculosis infection (LTBI): FAQs”, World Health Organization, 2021. [Online]. Available: https://www.who.int/tb/areas-of-work/preventive-care/ltbi/faqs/en/

(8) “Tuberculosis: Basic TB Facts: TB Prevention”, Centers for Disease Control and Prevention, Division of Tuberculosis Elimination, 2016. [Online]. Available: https://www.cdc.gov/tb/topic/basics/tbprevention.htm

(9) “Global Health: Newsrooms: Global Health Topics: Tuberculosis”, Centers for Disease Control and Prevention, Global Health, 2020. [Online]. Available: https://www.cdc.gov/globalhealth/newsroom/topics/tb/index.html

(10) “Tuberculosis: Key Facts”, World Health Organization, 2020. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/tuberculosis

(11) S. Fatima, A. Kumari, G. Das, and V. Dwivedi, “Tuberculosis vaccine: A journey from BCG to present”, Life Sciences, vol. 252, p. 117594, 2020. Available: 10.1016/j.lfs.2020.117594

(12) G. Colditz, “Efficacy of BCG Vaccine in the Prevention of Tuberculosis”, JAMA, vol. 271, no. 9, p. 698, 1994. Available: 10.1001/jama.1994.03510330076038

(13) “WHO End TB Strategy”, World Health Organization, 2021. [Online]. Available: https://www.who.int/tb/post2015_strategy/en/

Reviewing Fungal Infections

by Dr. Jaclynn Moskow

Candida auris fungi, emerging multidrug resistant fungus, agent of fungal infection
Candida auris, an emerging multidrug-resistant fungus

 

Fungi are similar in many ways to bacteria – both have a cell nucleus and complex cell walls. Unlike bacteria, species of fungi include both single-celled organisms (yeasts) and multicellular forms (molds). Molds resemble plants and often consist of filaments, spores, root structures, etc. Fungal infections (mycoses) include candidiasis, dermatophytosis, blastomycosis, coccidioidomycosis, histoplasmosis, cryptococcosis, paracoccidioidomycosis, aspergillosis, zygomycosis, and pneumocystosis.

 

Candidiasis

Candidiasis refers to infections caused by yeasts of the genus Candida. Candida is the most common cause of fungal infections worldwide; and is part of the normal flora of the mouth, GI tract, vagina, and skin. Candidiasis occurs when an imbalance in the amount of Candida in these areas results in signs and symptoms of inflammation, or when Candida colonizes parts of the body in which it is not normally present. All forms of candidiasis are more common in individuals who are immunocompromised. 

Vulvovaginal candidiasis fungal infection, commonly referred to as a “yeast infection,” is estimated to affect 70-75% of women at least once during their lifetimes (1). Symptoms may include itching, burning, soreness, redness, swelling, pain during intercourse or urination, and a thick, white discharge that is usually odorless and may resemble cottage cheese. Factors that predispose to vulvovaginal candidiasis include the use of antibiotics, douches, and other vaginal products, diabetes, hormonal changes such as those seen with pregnancy and menopause, contraceptives, immune deficiency, including HIV / AIDS, and certain genetic factors. A variety of topical and systemic azole agents can be used for treatment.

Oropharyngeal candidiasis commonly referred to as “thrush,” occurs from Candida overgrowth on the lining of the mouth, tongue, gums, tonsils, and lips. The condition may cause visible white or yellow patches, soreness, an unpleasant taste, and occasionally a “cotton-like sensation.” It is much more common in infants and toddlers than in adults. Predisposing factors in adults include smoking, dentures, antibiotic and corticosteroid use, and hormonal changes. 80-90% of HIV patients will experience oropharyngeal candidiasis (2). Proper dental hygiene may help protect against oropharyngeal candidiasis. Various azole mouthwashes, gels, and lozenges can be used for treatment, as well as oral antifungal medications.

Common sites of cutaneous candidiasis include the axilla (armpit), the area under the breast, the groin region, the intergluteal cleft, and on the hands and feet. Candida is a common cause of “diaper rash.”

Invasive candidiasis (“deep candidiasis”) occurs when Candida affects the bloodstream, heart, brain, eyes, bones, or other organs. It may occur in patients that are immunocompromised, or as a result of fungal infection introduced by vascular lines, prosthetic cardiac valves, and urinary catheters. Systemic symptoms may result, including fever, chills, pain, hypotension, and neurological deficits. The condition can be fatal. One strain, in particular, Candida auris, poses a threat in hospitals, as it is often multidrug-resistant and difficult to identify using standard laboratory methods (3).

 

Dermatophytosis

Dermatophytosis (“tinea”) is a fungal infection of keratinized tissue, including the skin, hair, and nails. Fungal causes include Ascomycota, Euascomycetes, Onygenales: Epidermophyton, Microsporum, Trichophyton, Trichosporon spp., and Arthroderma (4). Dermatophytosis is contracted by contact with infected humans or animals, or contact with contaminated objects, flooring, or soil.

Trichophyton mentagrophytes - an agent of fungal infection
Fungus Trichophyton mentagrophytes

 

The nomenclature of these conditions derives from the body region that is affected. For example, Tinea manuum is a dermatophyte infection of the hands, while Tinea barbae is an infection of the beard or mustache. Tinea pedis affects the feet, Tinea unguium the nails, Tinea cruris the groin, Tinea corporis the trunk, Tinea capitis the scalp, and Tinea faciei the non-bearded area of the face. 

Tinea corporis is commonly referred to as “ringworm.” It presents as a red, annular, scaly patch, often with central clearing. The condition is usually pruritic and is very common – especially among children. High rates are seen in Africa, India, and urban areas of the Americas (5). A common source of adult infection is through handling puppies and kittens. A wide variety of creams, ointments, gels, and sprays are available for treatment.

Tinea pedis is commonly referred to as “athlete’s foot”; and is the most common form of dermatophytosis in adults (6). The condition can cause itching, stinging, and burning of the feet – often with redness, blisters, and peeling. Tinea pedis is often acquired from wet floor surfaces such as showers, locker rooms, and pool areas. Wearing foot protection in these areas can help prevent transmission. 

The same fungal species that cause Tinea pedis can also cause Tinea cruris, commonly known as “jock itch.” Tinea cruris presents as a red, pruritic, and often annular rash in the crease of the groin. The condition may spread to the upper thigh in a “half-moon” shape. The condition can be acquired by sharing contaminated towels or clothing. Both Tinea pedis and Tinea cruris usually respond well to topical antifungals.

 

Endemic Mycoses

Endemic mycoses refer to a diverse group of fungal infections found in distinct geographical regions. They can cause significant morbidity and mortality in immunocompromised individuals, and may also affect healthy people. 

Blastomycosis is caused by the fungus Blastomyces. It mainly affects people living in regions of the United States and Canada surrounding the Ohio and Mississippi River valleys and the Great Lakes (7). Blastomycosis is acquired through inhalation of spores, often after participating in activities that disturb the soil. Symptoms are “flu-like” and may include fever, fatigue, muscle aches, night sweats, and cough. A chronic disease may affect the lungs, skin, bones, joints, genitourinary tract, or central nervous system. Amphotericin B is the treatment of choice.

Coccidioidomycosis (“Valley Fever”) is caused by Coccidioides immitis and Coccidioides posadasii. The condition is found in the Southwestern United States and parts of Mexico and Central and South America. Like blastomycosis, coccidioidomycosis follows the inhalation of spores from the soil. Symptoms are similar to coccidioidomycosis and are flu-like. A rash on the upper body or legs is commonly encountered. Most people with coccidioidomycosis improve without treatment, but fluconazole and similar antifungals can be used (8).

Fungus Coccidioides immitis, saprophytic stage, 3D illustration showing fungal arthroconidia. Pathogenic fungi that reside in soil and can cause fungal infection Coccidioidomycosis, or Valley fever
Coccidioides immitis, an agent of fungal infection Coccidioidomycosis (aka Valley fever), saprophytic stage.

 

Histoplasmosis, caused by Histoplasma, is acquired by inhaling spores – usually from soil containing bird- or bat-droppings.  The condition is found in the Ohio and Mississippi River valleys and parts of Central and South America, Africa, Asia, and Australia (9).  Histoplasmosis is also characterized by a flu-like illness and is usually self-limiting. 

Cryptococcosis is caused by various species of Cryptococcus, yeasts that are found in the soil and on certain trees. Cryptococcus gattii is found in California, Oregon, Washington, Canada, Australia, Papua New Guinea, and South America (10). Cryptococcus neoformans is found in all countries. Cryptococcus is often associated with pneumonia or meningitis. The current global incidence is estimated at 1 million cases per year, with 50% mortality (11). Most of these cases occur in individuals with HIV / AIDS. Treatment consists of Amphotericin B and Flucytosine, followed by Fluconazole.

Paracoccidioidomycosis is caused by Paracoccidioides, found in parts of Central and South America (12). It can cause lesions in the mouth and throat, rash, lymphadenopathy, fever, cough, and hepatosplenomegaly. Talaromycosis, formally known as sporotrichosis, is an endemic mycosis caused by Talaromyces marneffei and other species. The condition is found in Southeast Asia, Southern China, and Eastern India (13). Clinical manifestations include fever, cough, lymphadenopathy, hepatosplenomegaly, diarrhea, and abdominal pain.

 

Mold Infections

Most people inhale mold spores every day without becoming ill, but occasionally severe disease can result. Infection by Aspergillus (aspergillosis) may present as an allergic reaction. The fungus can also cause infection of the sinuses and lungs. Formation of “fungal ball” (aspergillomas) may occur in patients with pre-existing lung diseases. Aspergillus can also infect the eyes, skin, cardiac valves, brain, gastrointestinal tract, and genitourinary tract. Treatment options include Voriconazole, Amphotericin B, and Isavuconazole (14).

Aspergillus (mold) under the microscopic view. Aspergillus is an agent of fungal infection.
Aspergillus spp. under a microscope

 

Zygomycosis (“mucormycosis”) is caused by a group of molds called Mucormycetes. This fungal infection is commonly associated with hyperglycemia, metabolic (diabetic, uremic) acidosis, corticosteroid therapy, and neutropenia, transplantation, heroin injection, and administration of deferoxamine (15). Common sites of infection include the paranasal sinuses and contiguous structures, cranial nerves, cerebral arteries, lungs, and skin. Treatment may include intravenous Amphotericin B, followed by oral Posaconazole or Isavuconazole.

Other molds that can cause allergies and infections in humans include Stachybotrys chartarum, Alternaria alternata, Lomentospora prolificans, Scedosporium apiospermum, Cladosporium, and Penicillium.

Pneumocystis jirovecii, an agent of Pneymocystis pneumonia
Pneumocystis jirovecii, an agent of Pneumocystis pneumonia fungal infection

Pneumocystis pneumonia

Pneumocystis pneumonia (PCP) is caused by the fungus Pneumocystis jirovecii.  Until recent years, the organism had been classified as a protozoan parasite. Pneumocystis pneumonia usually occurs in individuals with severe immune suppression, including HIV / AIDS.  Presenting symptoms include shortness of breath, fever, and a nonproductive cough. Extrapulmonary infection is rare but can occur. Treatment options include Sulfamethoxazole / Trimethoprim, Pentamidine, Dapsone + Trimethoprim, Atovaquone, or Primaquine + Clindamycin (16).

 

Did you like this article? Share it on social media!

Check out more of our latest content here

 

References

(1) Sobel JD. Vulvovaginal candidosis. Lancet. 2007 Jun 9;369(9577):1961-71. doi: 10.1016/S0140-6736(07)60917-9.

(2) Patil S, Majumdar B, Sarode SC, Sarode GS, Awan KH. Oropharyngeal Candidosis in HIV-Infected Patients-An Update. Front Microbiol. 2018 May 15;9:980. doi: 10.3389/fmicb.2018.00980.

(3) “General Information about Candida auris”, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), 2019. [Online]. Available: https://www.cdc.gov/fungal/candida-auris/candida-auris-qanda.html

(4)”Dermatophytosis”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/dermatophytosis-10600

(5) M. Handler, “What is the global incidence of tinea capitis (scalp ringworm)?”, Medscape.com, 2020. [Online]. Available: https://www.medscape.com/answers/1091351-36134/what-is-the-global-incidence-of-tinea-capitis-scalp-ringworm

(6) Ilkit M, Durdu M. Tinea pedis: the etiology and global epidemiology of a common fungal infection. Crit Rev Microbiol. 2015;41(3):374-88. doi: 10.3109/1040841X.2013.856853.

(7) “Blastomycosis”, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), 2020. [Online]. Available: https://www.cdc.gov/fungal/diseases/blastomycosis/index.html

(8) “Treatment for Valley Fever (Coccidioidomycosis)”, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), 2019. [Online]. Available: https://www.cdc.gov/fungal/diseases/coccidioidomycosis/treatment.html

(9) “Histoplasmosis”, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), 2020. [Online]. Available: https://www.cdc.gov/fungal/diseases/histoplasmosis/index.html

(10) “C. gattii Infection Statistics”, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), 2020. [Online]. Available: https://www.cdc.gov/fungal/diseases/cryptococcosis-gattii/statistics.html

(11)”Cryptococcosis worldwide distribution”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/cryptococcosis-10530/worldwide

(12) “Paracoccidioidomycosis”, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), 2020. [Online]. Available: https://www.cdc.gov/fungal/diseases/other/paracoccidioidomycosis.html

(13) “Talaromycosis (formerly Penicilliosis)”, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), 2020. [Online]. Available: https://www.cdc.gov/fungal/diseases/other/talaromycosis.html

(14) “Aspergillosis”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/aspergillosis-10140

(15) “Zygomycosis”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/zygomycosis-12670

(16) “Pneumocystis pneumonia”, GIDEON Informatics, Inc, 2021. [Online]. Available: https://app.gideononline.com/explore/diseases/pneumocystis-pneumonia-11850

Pathogen of the month: Chikungunya virus

by Dr. Jaclynn Moskow

 

Chikungunya virus, 3D illustration. Emerging mosquito-borne RNA virus from Togaviridae family that can cause outbreaks of a debilitating arthritis-like disease
3D illustration of the Chikungunya virus

 

Chikungunya refers to an infection caused by the Chikungunya virus, an alphavirus of the Togaviridae family. Like its close relative, the Semliki Forest virus, the Chikungunya virus is transmitted from human to human via mosquito bites. 

Chikungunya is characterized by fever, joint and muscle pain, and rash.  The disease was discovered in Tanzania in 1952, and since that time has been identified in over 60 countries around the world. The word “Chikungunya” means “that which bends up” in the Makonde language, spoken by a group indigenous to Tanzania and Mozambique. It is thought that this term was coined to describe the posture of patients affected with severe disease.

 

Transmission

Mosquito species that carry Chikungunya include Aedes aegypti in the tropics, Aedes albopictus in the tropics and colder areas, and approximately one dozen Aedes species in Africa, including Aedes furcifer and Aedes taylori. Transmission occurs after a mosquito bites someone infected with Chikungunya and then subsequently bites someone else. Mosquitos pick up the Chikungunya virus from human blood, the virus then replicates inside the mosquito and can be transmitted via their salvia. Once a mosquito acquires the virus, it will likely carry it for the rest of its life. There is evidence that some animals, including non-human primates, rodents, and birds, may act as reservoirs for the Chikungunya virus.

Aedes aegypti Mosquito. Close up a Mosquito Mosquito on leaf,Mosquito Vector-borne diseases,Chikungunya.Dengue fever.Rift Valley fever.Yellow fever.Zika virus.
Aedes aegypti mosquito, the vector of Chikungunya

 

Signs and Symptoms

Signs and Symptoms of Chikungunya develop after a 2-12 day incubation period. Cases vary in severity, and asymptomatic infection may occur. The rate of asymptomatic cases is estimated to be between 4% and 28%.

Cases often begin with an abrupt onset of fever. Polyarthralgia occurs in 70% of cases, usually involving small joints. Swelling of joints may also occur, typically without fluid accumulation. In greater than 50% of cases, a maculopapular rash on the palms, soles, limbs, torso, and/or face is present. This rash may progress to desquamation. Fever generally resolves within one week, but joint pain may persist for months. Sometimes, a “saddle-back fever curve” is seen, with fever resolving and then returning. Moderate to severe lymphopenia is often noted. Thrombocytopenia, leukopenia, elevated liver enzymes, anemia, and elevated creatinine may also be observed.

Facial and neck erythema and conjunctival suffusion may be noted. Headache, photophobia, retro-orbital pain, pharyngitis, nausea, and vomiting can occur. Sometimes, pneumonia and dry cough are seen. Pruritus is common. Patients may complain of exhaustion and insomnia. Symptoms of Chikungunya can persist from one week to several months. Residual chronic joint pain may continue in some cases. Chronic disease is more common in older patients and patients with prior rheumatological disease.

Chikungunya can also cause neurological and ophthalmologic complications. Eye involvement may include retinitis, retinal detachment, optic neuritis, uveitis, dendritic lesions, and Fuchs heterocyclic iridocyclitis. Neurological manifestations can include altered mental function, encephalitis, seizures, myelopathy, Guillain-Barré syndrome, bulbar palsy, acute flaccid paralysis, focal neurological deficit, and sudden sensorineural hearing loss.

Additional rare complications of Chikungunya include hemorrhagic syndrome, cardiovascular shock, arrhythmias, myopericarditis, renal failure, rhabdomyolysis, and thrombocytopenic purpura.

Children with Chikungunya are more likely to experience neurological and dermatological symptoms, and less likely to have arthralgia. Transplacental transmission of the virus can occur and may result in neonatal encephalopathy, neonatal respiratory distress, sepsis, necrotizing enterocolitis, and cardiologic complications. Infants who become infected during the perinatal period may experience fever, rash, peripheral edema, lymphopenia, and thrombocytopenia. Congenital and perinatal infections are associated with poor neurodevelopmental outcomes. Transmission of Chikungunya via breastfeeding has not been noted.

Fatalities from Chikungunya are rare, occurring in about 1 per 1,000 cases. Fatalities are more common in newborns and individuals with multiple medical comorbidities. The use of NSAIDs prior to hospitalization is associated with an increase in disease severity. Infection with Chikungunya is likely to protect against future disease. 

 

Diagnosis and Treatment

A diagnosis of Chikungunya should be considered in individuals living in – or having traveled to – areas with known outbreaks presenting with acute onset of fever and joint pain. Dengue fever and Zika virus infection should be considered in a differential diagnosis of Chikungunya, as they are also carried by Aedes species mosquitoes and may present with similar signs and symptoms.

PCR, serology, and viral culture can be used for laboratory confirmation of Chikungunya. Chikungunya is classified as a biosafety level-3 pathogen, and samples should be handled accordingly. Blood-borne transmission from patients to healthcare workers and laboratory personnel has been documented.

Patients with Chikungunya are treated with supportive care, including hydration and pain management. It is important to prevent mosquito bites during the first week of illness, in order to prevent additional transmission.

 

Chikungunya outbreaks

Between 1952 and 2013, Chikungunya virus outbreaks were identified in Africa, Asia, Europe, and the Indian and Pacific Oceans. In 2013, cases were first identified in the Americas and nations of the Caribbean, and today the majority of cases occur in these locations – where populations have no preexisting immunity.

Over the past decade, the countries that reported most cases of Chikungunya have included Haiti, Dominican Republic, Guadeloupe, Martinique, El Salvador, Honduras, Nicaragua, Columbia, Bolivia, Brazil, Ethiopia, Chad, India, Laos, and French Polynesia. If you have a GIDEON account, click to explore Chikungunya Outbreak Map.

Between 2004 and 2006, an outbreak of Chikungunya that began in Kenya resulted in 500,000 cases in countries of the Indian Ocean, including one-third of the population of La Reunion Island. This outbreak spread to India, where almost 1.5 million people were infected. Ongoing outbreaks have been occurring in Brazil since 2014, with over 300,000 cases occurring in 2016. It is thought that a mutation occurred around 2005 that enabled the virus to survive in Aedes albopictus; and that having this additional species as a vector has fueled recent outbreaks.

Local transmission was reported for the first time in Europe in 2007, with 197 cases occurring in north-eastern Italy. The source of this outbreak was traced to a single individual who had returned from India with the infection. A second outbreak occurred in Europe in 2014, centered mainly in France and the UK and resulting in about 1500 cases.

Chikungunya cases in United States, 2006 - 2020, GIDEON graph

 

In 2014, local transmission of the Chikungunya virus was identified in the territories of the United States for the first time, with 4,659 cases occurring between American Samoa, Puerto Rico, the U.S. Virgin Islands, and Florida. Since that time, the rate of local transmission in the United States has decreased each year, with 179 cases occurring in 2016, 8 cases in 2018, and no cases in 2020.

 

Prevention

There is currently no vaccine to prevent Chikungunya. The CDC recommends the use of the Environmental Protection Agency (EPA)-registered insect repellents when traveling to areas with outbreaks. Wearing long sleeves and pants can also reduce transmission, as can sleeping in places with air conditioning and window and door screens. The CDC also recommends using 0.5% permethrin to treat clothing and gear to repel mosquitos.

During outbreaks, measures should be taken to control mosquito populations by reducing both natural and artificial water-filled habitats where they may breed. Any items that may hold water, such as pools, buckets, planters, and trash containers, should be regularly emptied and cleaned.

 

Did you like this article? Share it on social media!

Check out more of our latest content here

 

This blog was written using data from the GIDEON database, CDC, and WHO.

Hospital-Acquired Infections

by Dr. Jaclynn Moskow

Hospital-acquired infections, also known as “healthcare-associated infections” or “nosocomial infections,” refer to infections that were not present before seeking medical care and were acquired in a healthcare setting. Hospital-acquired infections can be contracted in hospitals, ambulatory clinics, surgical centers, nursing homes, long-term care facilities, dialysis centers, and diagnostic laboratories. 

Hospital setting: male nurse pushing stretcher gurney bed in hospital corridor with doctors & senior female patient

Hospital-acquired infections are defined by symptoms presenting 48-or-more hours after hospital admission, within three days of discharge, or 30 days postoperatively (1). The vast majority of hospital-acquired infections are caused by bacteria, and the propagation of these infections is worsened by the increasing presence of multi-drug resistant bacterial strains.

 

Prevalence of hospital-acquired infections

In the United States, approximately 1 in 25 hospitalized patients will contract an infection (2). Data collected by the Centers for Disease Control and Prevention identified an estimated 1.7 million hospital-acquired infections in the United States during 2002, resulting in 99,000 associated deaths (3).

Estimates from the UK place the prevalence of hospital-acquired infections at approximately 1-in-10 patients (1). In developing nations, the prevalence is higher and may occasionally exceed 25% (4).

CDC data show that urinary tract infections make up approximately 36% of all hospital-acquired infections in the ICU, surgical site infections 20%, pneumonias 11%, bloodstream infections 11%, and other infections 22% (3).

 

Risk Factors

Immunocompromised individuals, such as those undergoing chemotherapy, are at an increased risk for hospital-acquired infection. Geriatric patients are also at increased risk, as are those with multiple medical comorbidities. The incidence of hospital-acquired infections increases as the length of hospital stay increases. Patients in the ICU, receiving mechanical ventilator support, undergoing surgery, and having indwelling devices are also at increased risk.

One large study that examined 231,459 patients across 947 hospitals in Europe found that 19.5% of patients in the ICU experienced at least one hospital-acquired infection (5).

 

Catheter-Associated Urinary Tract Infections (CAUTI)

Catheter-associated urinary tract infections are the most common forms of hospital-acquired infection. Approximately 75% of all UTIs contracted in the hospital are associated with catheter use, and the most important risk factor for developing a catheter-associated urinary tract infection is prolonged catheter use (6). Common pathogens identified in catheter-associated urinary tract infections include Escherichia coli, Enterococcus species, Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Morganella morganii, and Candida albicans. Some organisms, including Pseudomonas and Proteus, can form biofilms around catheters.

 

Surgical Site Infections (SSI)

Surgical site infections occur postoperatively in the skin, internal organs, or implanted materials involved in the surgery. Diabetic patients are at an increased risk of developing surgical site infections. The incidence of surgical site infections increases as procedure duration increases and the use of antimicrobial prophylaxis decreases the risk of such infections. Common causes of surgical site infections include Staphylococcus aureus (including MRSA), coagulase-negative Staphylococcus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. In developed nations, between 2-5% of all patients who undergo surgery develop a surgical site infection; and in developing nations, between 12%-39% do (4).

 

Hospital-Acquired Pneumonia (HAP) and Ventilator-Associated Pneumonia (VAP)

The Infectious Diseases Society of America (IDSA) defines hospital-acquired pneumonia as “pneumonia that occurs 48 hours or more after admission to the hospital and did not appear to be incubating at the time of admission”; and defines ventilator-associated pneumonia as “pneumonia that develops more than 48 to 72 hours after endotracheal intubation.” Common bacterial causes of both hospital-acquired pneumonia and ventilator-associated pneumonia include Staphylococcus aureus (including MRSA), Streptococcus pneumoniae, Haemophilus influenzae, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Common viral causes include rhinovirus, parainfluenza virus, influenza virus, respiratory syncytial virus, and coronavirus. 

The incidence of ventilator-associated pneumonia in patients who require mechanical ventilation for more than 48 hours is estimated at 25-to-30% (7).

 

The male patient with intravenous catheter. Central Line-Associated Bloodstream Infection (CLABSI) is one of the types of hospital-acquired infections

Central Line-Associated Bloodstream Infection (CLABSI)

Central line-associated bloodstream infections occur at the site of central venous catheters. The mortality rate for central line-associated bloodstream infections is between 12% and 25% (8). Common causes of central line-associated bloodstream infections include coagulase-negative Staphylococci, Staphylococcus aureus (including MRSA), Enterobacte, Klebsiella pneumoniae, and Candida albicans. Central lines can be placed in the neck, chest, arm, or groin. The use of femoral-site lines is associated with an increased risk of infection and is no longer recommended (9). Antibiotic lock therapy can reduce the incidence of central line-associated bloodstream infections.

 

Clostridium Difficile Infections (CDI)

An estimated 12.1% of all hospital-acquired infections are caused by Clostridium difficile, making Clostridium difficile the most common cause of hospital-acquired infections (10). Approximately 75% of all Clostridium difficile infections are hospital-acquired (11), and an estimated 2.3% of all US hospital costs are related to these infections (12). Click to see how you can use Gideon to explore Clostridium difficile. 

 

Hospital-Acquired COVID-19

The incidence of hospital-acquired COVID-19 remains unknown. A meta-analysis of studies examining COVID-19 cases in China found that 44% of cases were likely to have originated from a healthcare setting (13). A hospital in South Africa reported that a single case led to six major outbreak clusters in several hospital wards, a nursing home, and a dialysis unit. Ultimately this episode resulted in 135 infections and 15 deaths (14). Up to 1-in-4 cases of COVID-19 in the UK are likely to have been hospital-acquired (15).

In contrast, a recent study from the United States suggests that hospital-acquired COVID-19 is actually quite uncommon when rigorous infection-control measures are followed. This study looked at all patients admitted to Brigham and Women’s Hospital in Boston, Massachusetts, between March 7 and May 30, 2020. They determined that of 697 COVID-19 diagnoses, only two were hospital-acquired, including one case that likely resulted from a visit by a pre-symptomatic spouse (16).

The World Health Organization estimates that healthcare workers may comprise as many as one-in-seven COVID-19 cases (17), reflecting a high incidence of hospital-acquired disease. The CDC is not currently collecting data on hospital-acquired COVID-19, as hospitals are required to report to the U.S. Department of Health and Human Services. 

 

Did you like this article? Share it on social media!

Check out more of our latest content here

 

References 

(1) Inweregbu, K., Dave, J. and Pittard, A., 2005. Nosocomial infections. Continuing Education in Anaesthesia Critical Care & Pain, 5(1), pp.14-17.

(2) Magill SS, Edwards JR, Bamberg W, et al., 2014. Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of healthcare-associated infections. N Engl J Med, 27;370(13), pp. 1198-208.

(3) Klevens, R., Edwards, J., Richards, C., et al., 2007. Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 122(2), pp.160-166.

(4) Allegranzi, B. and Pittet, D., 2007. Healthcare-Associated Infection in Developing Countries: Simple Solutions to Meet Complex Challenges. Infection Control & Hospital Epidemiology, 28(12), pp.1323-1327. 

(5) European Centre for Disease Prevention and Control, 2013. Point-prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. Stockholm: EDC.

(6) Cdc.gov. 2021. Catheter-associated Urinary Tract Infections (CAUTI) | HAI | CDC. [online] Available at: https://www.cdc.gov/hai/ca_uti/uti.html.

(7) Cornejo-Juárez, P., González-Oros, I., Mota-Castañeda, P., Vilar-Compte, D. and Volkow-Fernández, P., 2020. Ventilator-associated pneumonia in patients with cancer: Impact of multidrug resistant bacteria. World Journal of Critical Care Medicine, 9(3), pp.43-53.

(8) Dumont, C. and Nesselrodt, D., 2012. Preventing central line-associated bloodstream infections CLABSI. Nursing, 42(6), pp.41-46. 

(9) Palmer, E., 2021. Avoiding the femoral vein in central venous cannulation: an outdated practice. [online] Acphospitalist.org. Available at: https://acphospitalist.org/archives/2018/08/perspectives-avoiding-the-femoral-vein-in-central-venous-cannulation-an-outdated-practice.htm.

(10) Monegro, A., Muppidi, V. and Regunath, H., 2020. Hospital Acquired Infections. StatPearls, [online] Available at: https://www.ncbi.nlm.nih.gov/books/NBK441857/.

(11) Louh, I., Greendyke, W., Hermann, E., e al., 2017. Clostridium Difficile Infection in Acute Care Hospitals: Systematic Review and Best Practices for Prevention. Infection Control & Hospital Epidemiology, 38(4), pp.476-482.

(12) Jump, R., 2013. Clostridium difficile infection in older adults. Aging health, 9(4), pp.403-414.

(13) Zhou, Q., Gao, Y., Wang, X., et al., 2020. Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Annals of Translational Medicine, 8(10), pp.629-629.

(14) Lessells, R., Moosa, Y. and de Oliviera, T., 2020. Report into a nosocomial outbreak of coronavirus disease 2019 (COVID‐19) at Netcare St. Augustine’s Hospital. [online] Available at: https://www.krisp.org.za/manuscripts/.

(15) Discombe, M., 2021. Covid infections caught in hospital rise by a third in one week. [online] Health Service Journal. Available at: https://www.hsj.co.uk/patient-safety/covid-infections-caught-in-hospital-rise-by-a-third-in-one-week/7029211.article

(16) Rhee, C., Baker, M., Vaidya, V., et al., 2020. Incidence of Nosocomial COVID-19 in Patients Hospitalized at a Large US Academic Medical Center. JAMA Network Open, 3(9), p.e2020498.

(17) Nebehay, S., 2021. One in 7 reported COVID-19 infections is among health workers, WHO says. [online] U.S. Available at: https://www.reuters.com/article/us-health-coronavirus-who-healthworkers/one-in-7-reported-covid-19-infections-is-among-health-workers-who-says-idUSKBN2681TR?il=0

Common cold, flu, or coronavirus?

Person lying in bed feeling unwell

 

In the early days of the outbreak, the novel coronavirus (COVID-19) was repeatedly compared to the flu (influenza) and even to the common cold (rhinoviruses, et al). This was due to an initial impression of shared symptoms.

The differences between these conditions are particularly important as we kick off National Influenza Vaccination Week (NIVW) and the ‘flu season’. So, how can we tell which of these diseases we are dealing with in a given patient?

 

Common cold, Influenza (flu), and COVID-19 (coronavirus) symptoms comparison table

 

Common cold

Let’s start with the common cold, a condition that can be caused by over 200 different strains of viruses.  On average, an adult will contract a cold two to three times yearly – making the total number of cases incalculable. Symptoms are almost always mild and may include a runny nose, fatigue, chills, coughing, sneezing, sore throat, and a headache.  Children – but not adults – often experience a low-grade fever.

Most cases clear without medication in less than one week, although the cough can persist for up to 18 days. Bottom line: symptoms are mild.  Your normal activity may diminish, and you might even spend a few days in bed, but you should not feel short of breath or unable to complete basic tasks.

 

Influenza (flu)

Influenza (flu) was once one of the most feared diseases, worldwide – and was responsible for the largest and most deadly outbreak in the 20th century (the ‘Spanish flu’),  In more recent years, the disease is largely manageable, thanks to advancements in medicine and technology.  Billions of doses of influenza vaccine may be administered in a given year, and several effective antiviral drugs are widely available. Nevertheless, the disease is still responsible for hundreds of thousands of deaths every year.

Influenza symptoms are similar to those of the common cold (fatigue, chills, coughing, etc) but much more acute, typically with high fever and pain in the back and muscles. Fatigue and even exhaustion may follow and pain medication is often required. The symptoms may persist for a few days to over a week.

Occasionally, influenza may be complicated by pneumonia due to bacteria, or to the influenza virus itself. A fatal outcome may ensue, particularly in the elderly or in patients with underlying chronic conditions. 

 

Coronavirus (COVID-19)

COVID-19 has evolved into the iconic disease of the 21st century, with tens of millions of cases reported worldwide in a period of only 10 months. The media inundate us all with a seemingly endless list of potential symptoms, signs, and complicating conditions, so here are some more common signs and symptoms which might differentiate the latest coronavirus from other respiratory diseases. 

In most cases, the illness will begin as if you do have a cold or the flu, with coughing, fever, and fatigue.  A common early symptom is the loss of the senses of smell or taste, which has been reported in the majority of cases in many reports. After a few days, you may feel short of breath and experience pain in the muscles. At this point, you should have already contacted your local doctor or clinic. Even if symptoms are relatively mild, you must seek medical attention if you are over the age of 65 or have a history of high blood pressure, diabetes, heart or lung disease, cancer, or other ongoing illness. 

Thankfully, effective and accurate tests for COVID-19 are widely available, and there is no need to “self-diagnose.”  A variety of drugs are already in use for the disease, and several promising vaccines are due to be released in the coming weeks.

 

Did you like this article? Share it on social media!

Check out more of our latest content here

Neglected Diseases – Neglected Once Again

written by Dr. Stephen A. Berger

For several years, the World Health Organization has been following a group of twenty-or-so Neglected Tropical DiseasesIn the Developed World, these conditions are largely unknown to the general public, and even to physicians working in fields outside of Epidemiology and Infectious Diseases. In only three months, the list of neglected diseases has grown to include more than 360 infectious conditions – all because of a single new viral disease called COVID-19.

As of this morning, 287 cases of COVID-19 had been reported in the DRC (Democratic Republic of Congo) resulting in 23 deaths. How many are aware that this same country is in the midst of a massive outbreak of Ebola – which has claimed 3,457 cases and 2,266 deaths to date. Since January 1, nearby Nigeria has reported 188 deaths from Lassa fever, compared to only 13 deaths from COVID-19. 

Saudi Arabia is currently experiencing a massive outbreak of coronavirus infection, but not the one you’ve been reading about. For more than seven years, infection by MERS-CoV (a close “relative” of the COVID-19 virus) has infected 2,044 Saudis and claimed the lives of 821. Compare this to the current COVID-19 outbreak, which has killed “only” 83 Saudis as of today. Any patient who walks into a clinic in Rio, Paris or New York, and says that he has a cough and fever, will be rushed into an isolation room by a group of people draped in masks, gowns, goggles, and gloves. After all….what else could this be?! The answer to that question becomes apparent in the following list, generated by GIDEON.

Note in this screenshot that I’ve asked the computer to list all possible diseases that could explain the presence of fever, cough, and pneumonia in a group of American adults. The GIDEON program tells me that COVID-19 is “number one” on the list, with a statistical likelihood of 83%. But no less than 65 other diseases also appear on this list, including, as you might expect, Influenza and a variety of common viral conditions.

The message here is simple: in the era of COVID-19, not every disease IS COVID-19.

Outbreak of Toxoplasmosis Associated with Ingestion of Venison

Recently, ProMED reported an outbreak of severe febrile illness 5 days following ingestion of venison (http://www.promedmail.org/post/20171026.5405515 )  In the absence of gastrointestinal symptoms, these features are compatible with only a handful of infectious diseases. In 1980, a similar outbreak among American hunters was ascribed to acute toxoplasmosis. [1] The decision support module in Gideon (https://www.gideononline.com) also assigns a high ranking to toxoplasmosis.

Reference
———
1. Sacks JJ, Delgado DG, Lobel HO, Parker RL: Toxoplasmosis infection associated with eating undercooked venison. Am J Epidemiol. 1983; 118(6): 832-8; https://www.ncbi.nlm.nih.gov/pubmed/6650484

Note featured on ProMED

Varicella vs. Monkeypox

Outbreaks of varicella and monkeypox in Africa are occasionally mistaken for “smallpox”   The following table was generated by an interactive tool in Gideon (www.GideonOnline.com) which allows users to generate custom charts that contrast clinical features, drug spectra or microbial phenotypes.

 

 

 

South Sudan: Unknown Hemorrhagic Illness

Regarding an ongoing outbreak of hemorrhagic illness in South Sudan, a differential diagnosis list generated by Gideon [Global Infectious Disease & Epidemiology Network]https://www.gideononline.com, includes 2 lesser-known pathogens which have been associated with single small clusters of hemorrhagic fever in Africa: Bas-Congo virus (rhabdovirus) and Lujo virus (arenavirus). In 2008, 4 of 5 patients died of Lujo virus infection in a South African hospital, following transfer of an index patient from Zambia. The following year, 2 of 3 villagers in DR Congo died in an outbreak of Bas Congo virus infection. If tests for other pathogens continue to be negative, these 2 agents might be considered.

Cited on ProMED

GIDEON Sign In